Audi Q5: Reservoir
The reservoir collects the vaporized and gaseous mixture
coming from the evaporator to ensure the compressor only
receives gaseous refrigerant. Gaseous refrigerant is formed from
the vapor.
The refrigerant oil flowing in the circuit is not retained
in the reservoir as it has an oil drilling.
Moisture which has entered the refrigerant circuit during
repairs will be collected by a filter (desiccant bag) in the
reservoir.
Gaseous refrigerant is extracted with oil by the A/C
compressor.
Note
- Replace the reservoir if refrigerant circuit has been open
for a long time (beyond the normal repair time) and moisture has
penetrated inside, or if required due to a specific complaint.
Refer to
→ Chapter "Refrigerant Circuit Components, Replacing".
- Remove the sealing plugs -A-
and -B- only immediately before
installing.
- A desiccant bag in an unsealed reservoir is saturated with
moisture after a short period of time and unusable.
- When installing, note arrow for direction of flow if
necessary.
Restrictor
Restrictor in Front of the Evaporator
The restrictor creates a constriction. This restriction
reduces the flow and creates high and low pressure sides in the
refrigerant circuit. Before the restrictor the refrigerant which
is under a higher pressure is warm. After the restrictor the
refrigerant which is under a low pressure is cold. Before the
restriction there is a strainer for contaminants and after the
restriction there is a strainer, to atomize the refrigerant
before it reaches the evaporator.
Note
- Arrow -A- on restrictor points
to the evaporator.
- Replace after each opening of the circuit.
- There are different versions, therefore pay attention to the
different customer service information sources. Refer to
→ Heating, Ventilation and Air Conditioning; Rep. Gr.87; System
Overview - Refrigerant Circuit and (vehicle-specific
repair manual) and to the Parts Catalog .
Restrictor in Front of the High Voltage Battery Heat
Exchanger (Chiller)
The restrictor creates a constriction. This restriction
reduces the flow and creates high and low pressure sides in the
refrigerant circuit. Before the restrictor the refrigerant which
is under a higher pressure is warm. After the restrictor the
refrigerant which is under a low pressure is cold.
Note
- The illustration shows a refrigerant line
-A- with a fixed installed
restrictor -B- (without a strainer)
- The diameter of the illustrated variable orifice
-B- is approximately 0.7 mm.
Depending on the version of the refrigerant line this
constriction is either installed fixed in the refrigerant line
or only inserted. For the inserted version a strainer for
flowing deposits may be installed, which can be blocked by the
variable orifice.
- Before installing check for debris and if necessary clean or
replace.
- There are different versions, therefore pay attention to the
different customer service information sources. Refer to
→ Heating, Ventilation and Air Conditioning; Rep. Gr.87; System
Overview - Refrigerant Circuit and (vehicle-specific
repair manual) and to the Parts Catalog.
Receiver/Dryer
The receiver/dryer collects the fluid drops and then directs
them in an uninterrupted stream to the expansion valve. Moisture
which has entered the refrigerant circuit during repairs will be
collected by the desiccant bag in the receiver/dryer.
Note
- Replace the receiver/dryer if refrigerant circuit has been
open for a long time (beyond the normal repair time) and
moisture has penetrated inside, or if required due to a specific
complaint. Refer to
→ Chapter "Refrigerant Circuit Components, Replacing".
- Only remove sealing plugs shortly before installation.
- A desiccant bag in an unsealed receiver/dryer becomes
saturated with moisture after a short period of time and
unusable.
- When installing, note arrow for direction of flow if
necessary.
- Depending on the version of the refrigerant circuit, the
receiver/dryer is also installed (integrated) either on the
condenser or inside the condenser. Refer to
→ Heating, Ventilation and Air Conditioning; Rep. Gr.87; System
Overview - Refrigerant Circuit (vehicle-specific
repair manual) and the Parts Catalog.
- The procedure is different for each complaint depending on
the version of the receiver/dryer and the dryer cartridge. If
the receiver/dryer, for example, is attached to the condenser,
then it can be replaced complete with the drying cartridge. If
the receiver/dryer, for example, is inside the condenser, then
the dryer cartridge, and any possible additional filters, can be
replaced separately, on most versions. If the receiver/dryer is
inside the condenser and there is absolutely no way to replace
the reservoir or the dry cartridge individually, then the entire
condenser must be replaced. Refer to
→Heating, Ventilation and Air Conditioning; Rep. Gr.87
and
→Heating, Ventilation and Air Conditioning; Rep. Gr.87
(vehicle-specific repair manual) and Parts Catalog.
- Depending on the construction of the refrigerant circuit,
the receiver can also be secured onto the condenser. Refer to
→ Heating, Ventilation and Air Conditioning; Rep. Gr.87; System
Overview - Refrigerant Circuit (vehicle-specific
repair manual) and the Parts Catalog.
Expansion Valve
The expansion valve atomizes the streaming refrigerant and
controls the flow quantity so that the vapor is gaseous only at
the evaporator outlet, depending on the heat transmission.
Note
- Be sure to use the correct part number when replacing the
expansion valve. Refer to the Parts Catalog.
- Different characteristic curves matched to the appropriate
circuit. Refer to
→ Heating, Ventilation and Air Conditioning; Rep. Gr.87; System
Overview - Refrigerant Circuit (vehicle-specific
repair manual) and the Parts Catalog.
- Depending on the A/C compressor version, there may be a
valve installed on the high pressure side of the A/C compressor,
which prevents the liquid refrigerant from flowing back into the
compressor once the A/C is turned off. If an A/C compressor with
this valve is installed in a vehicle with a refrigerant circuit
having an expansion valve, then it may take some time until the
pressure in the high pressure side decreases (the expansion is
cold and the pressure in the low pressure side quickly increases
after it is turned off, the expansion valve closes and the
refrigerant flows slowly into the low pressure side). If the A/C
compressor is switched on, the pressure on the low pressure side
goes down, the expansion valve open and the refrigerant can flow
of the low pressure side.
Expansion Valve with Shut-Off Valve
Note
There are different versions of the shut-off valve with
different functions and with different names. The following
illustrated Hybrid Battery Refrigerant Shut-Off Valve 2 -N517-
is for example installed on an Audi Q7 hybrid in the battery
cooling module. Refer to
→ Heating, Ventilation and Air Conditioning; Rep.
Gr.87; Refrigerant Circuit; System Overview - Refrigerant
Circuit.
- The expansion valve -A- with
the Hybrid Battery Refrigerant Shut-Off Valve 2 -N517--B-
atomizes the streaming refrigerant and regulates the refrigerant
flow rate to the evaporator in the battery cooling module for
the Hybrid Battery Unit -AX1- so that the vapor becomes gaseous
only at the evaporator output, depending on the heat
transmission.
- If the Hybrid Battery Refrigerant Shut-Off Valve 2 -N517--B-
is activated by the electronics and is open, it lets refrigerant
flow through the expansion valve -A-
to the evaporator in the battery cooling module.
- The expansion valve -A- with
the Hybrid Battery Refrigerant Shut-Off Valve 2 -N517--B-
is installed on vehicles with a battery cooling module. It is
activated when the A/C system is in operation, if it is
necessary to cool the Hybrid Battery Unit -AX1-.
- If the Hybrid Battery Refrigerant Shut-Off Valve 2 -N517--B-
is activated by the electronics (for example, by the Battery
Regulation Control Module -J840-), it is open and lets the
refrigerant flow according to its control characteristic toward
the evaporator in the battery cooling module.
- The Hybrid Battery Refrigerant Shut-Off Valve 2 -N517--B-
attached to the expansion valve -A-
is activated, for example, by the Battery Regulation Control
Module -J840-. Refer to
→ Wiring diagrams, Troubleshooting & Component locations.
Use the Vehicle Diagnostic Tester in the "Guided Fault Finding"
Function for the A/C System and the Battery Regulation.
- If, for a vehicle with two evaporators (one in the A/C unit
and one in the battery cooling module, for example on the Q5
Hybrid), the measured temperature on one of the evaporators
corresponds to the specified value or the specified value falls
short, but does not reach the required specified value on the
other evaporator, the following adjustment is performed: the
Battery Regulation Control Module -J840- activates the electric
A/C compressor with increased speed (thereby increasing the A/C
system cooling output and decreasing the pressure on the low
pressure side as well as the evaporator temperature) via the
Electric Drive Power and Control Electronics -JX1- and the A/C
Compressor Control Module -J842-. If the specified value for the
temperature falls short at one of the evaporators, the Battery
Regulation Control Module -J840- activates the Hybrid Battery
Refrigerant Shut-Off Valve 1 -N516- or the Hybrid Battery
Refrigerant Shut-Off Valve 2 -N517-, so that the evaporator
which is too cold is no longer supplied with refrigerant. Use
the Vehicle Diagnostic Tester in the "Guided Fault Finding"
Function for the A/C System.
READ NEXT:
Note
There are different versions of the shut-off valve with
different functions and with different names. The following
illustrated Hybrid Battery Refrigerant Shut-Off Valve 1 -N516-
is
These rings seal off the connection points between
individual components of the refrigerant circuit.
Only O-rings that are resistant to refrigerant R134a and
refrigerant oil must be installed. Make
Refrigerant Circuit with Expansion Valve and Evaporator
The following illustration shows only the principle of a
refrigerant circuit, the design of the refrigerant circuit in
the respective vehicle
SEE MORE:
Overview - Wheel Bearing, Vehicles with FWD
1 - Protective Cap
2 - Nut
35 Nm
Always replace if removed
3 - Bolt
50 Nm +45º
Always replace if removed
4 - Upper Shock Absorber Mount
Installed position.
5 - Stop Buffer
6 - Protec
Connector Housings and Connectors, Repair Information
Note
Observe general notes for repairs on the vehicle electrical
system. Refer to
→ Chapter "Vehicle Electrical System, General Repair
Information".
Allocation of crimp contacts with correct fit to connector
housing is perfo